
REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE

Final Report
4. TITLE AND SUBTITLE

Programming Environment mpC for Distributed Memory Machines

6. AUTHOR(S)

Professor Victor Ivannikov

3. DATES COVERED (From -To)
17 September 1996 -11 -Jun-97

5a. CONTRACT NUMBER
F6170896W0319

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

20041221 234
5d. TASK NUMBER

5e. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Russian Academy of Sciences
Bolshaya Communisticheskaya 25
Moscow 109004
Russia

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

EOARD
PSC802BOX14
FPO 09499-0014

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)
SPC 96-4061

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This report results from a contract tasking Russian Academy of Sciences as follows: The contractor will investigate portable parallel
programming language. He will investigate new parallel programming language concepts for general purpose parallel computing- develop a
prototype parallel programming environment that addresses large and fine-grain parallelism, control-parallel and data-parallel paradigms and
static and dynamic task creation; and devise workable mechanisms to permit collaboration by US and Russian scientists over the Internet'

15. SUBJECT TERMS
EOARD, Computers

16. SECURITY CLASSIFICATION OF:

a. REPORT
UNCLAS

b. ABSTRACT
UNCLAS

c. THIS PAGE
UNCLAS

17. LIMITATION OF
ABSTRACT

UL

18, NUMBER
OF PAGES

21

19a. NAME OF RESPONSIBLE PERSON
Jerry J. Sellers, Maj, USAF

19b. TELEPHONE NUMBER (Include area code)
+44(0)20 7514 4318

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39-18

Programming Environment mpC for Distributed Memory
Machines (Report on Special Contract SPC-96-4061)

Authors: Alexey L. Lastovetsky (project leader)
Alexey Ya. Kalinov (senior researcher)
Ilya N. Ledovskih (researcher)
Dmitry M. Arapov (researcher)
Mikhail A. Posypkin (junior researcher)

Russian Academy of Sciences
Institute for System Programming
25 Bolshaya Kommunisticheskaya str.
Moscow 109004
Russia

Director: Prof. Victor P. Ivannikov
Phone: 7(095)912-4425
Fax: 7(095)912-1524
E-mail: ivan@ispras.ru

Moscow
January 15th, 1997 A _,, _

1. Introduction

The mpC language and its programming environment was initially developed to support pro-
gramming for massively parallel computers, first of all for high-performance distributed memory
machines (DMMs). In brief, our motivation of mpC was as follows.

Programming for DMMs is based mostly on message-passing function extensions of C or For-
tran, such as PVM and MPI. But it is tedious and error-prone to program in a message-passing
language, because of its low level. Therefore, high-level languages that facilitate parallel pro-
gramming have been developed for DMMs. They can be divided into two classes depending on
the parallel programming paradigm - task parallelism or data parallelism - underlying them. Task
parallel and data parallel programming languages allow the user to implement different classes of
parallel algorithms. But efficient implementation of many problems needs parallel algorithms that
can not be implemented in pure data parallel or task parallel styles. We have developed the mpC
language (as an ANSI C superset) which supports both task and data parallelism, allows both
static and dynamic process and communication structures, enables optimizations aimed at both
communication and computation, and supports modular parallel programming and the develop-
ment of a library of parallel programs.

The mpC language is based on the notion of network consisting of virtual processors of different
types and performances connected with links of different bandwidths. The user can describe net-
work topology, create and discard networks, and distribute data and computations over the net-
works. That is, the user can specify (dynamically!) in details virtual parallel machine which
performs his application.

In other words, the user can specify the topology of his application, and the programming envi-
ronment will use this (topological) information in run time to ensure the efficient execution of
the application on any particular DMM.

Currently, a prototype programming environment includes a compiler, a run-time support sys-
tem, a library, and a command-line user interface.

The compiler translates a source mpC program into ANSI C code with calls to functions of the
run-time support system.

Run-time support system manages the computing space which consists of a number of processes
running over target DMM as well as provides communications. It has a precisely specified inter-
face and encapsulates a particular communication package (currently, a small subset of MPI). It
ensures platform-independence of the rest of system components.

The library consists of a number of functions which support debugging mpC programs as well
as provide some low-level efficient facilities.

The command-line user interface consists of a number of shell commands supporting the cre-
ation of a virtual DMM and the execution of mpC programs on the machine. While creating the
machine, its topology is detected by a topology detector running a special benchmark and saved
in a file used by the run-time support system.

When developing the mpC programming environment, we used a network of workstations run-
ning MPI as a target parallel machine and found, that the principles, on which mpC is based, make
this programming language and its programming environment be very convenient tools for devel-
opment of efficient and portable parallel programs for heterogenous networks of workstations.

The point is that all programming environments for DMMs which we know of have one com-
mon property. Namely, when developing a parallel program, either the user has no facilities to
describe the virtual parallel system executing the program, or such facilities are too poor to spec-

ify an efficient distribution of computations and communications over the target DMM. Even
topological facilities of MPI (as well as MPI-2) have turned out insufficient to solve the problem.
So, to ensure the efficient execution of the program on a particular DMM, the user must use facil-
ities which are external to the program, such as boot schemes and application schemes. If the user
is familiar with both the topology of target DMM and the topology of the application, then, by
using such configurational files, he can map the processes which constitute the program onto pro-
cessors which make up DMM, to provide the most efficient execution of the program. But if the
application topology is defined in run time (that is, if it depends on input data), it won't be suc-
cessful.

The mpC language allows the user to specify an application topology, and its programming
environment uses the information in run time to map processes onto processors of target DMM
resulting in efficient execution of the application.

Section 2 of the paper outlines the mpC language. Section 3 sketches the prototype program-
ming environment. Section 4 demonstrates how mpC may be used to develop efficient and porta-
ble irregular applications for DMMs. Section 5 demonstrates how mpC may be used to develop
efficient and portable regular applications for heterogeneous DMMs. In addition, sections 4 and 5
tell more about the language.

2. Outline of the mpC language

In mpC, the notion of computing space is defined as a set of typed virtual processors of different
performance connected with links of different bandwidth accessible to the user for management.
There are several processor types, but most common virtual processors are of the scalar type.
A virtual processor has an attribute characterizing its relative performance. A directed link con-
necting two virtual processors is a one-way channel for transferring data from source processor to
the processor of destination.

The basic notion of the mpC language is network object or simply network. Network comprises
virtual processors of different types and performances connected with links of different band-
widths. Network is a region of the computing space which can be used to compute expressions
and execute statements.

Allocating network objects in the computing space and discarding them is performed in similar
fashion to allocating data objects in the storage and discarding them. Conceptually, creation of
new network is initiated by a virtual processor of some network already created. This virtual pro-
cessor is called a parent of the created network. The parent belongs to the created network. The
only virtual processor defined from the beginning of program execution till program termination
is the pre-defined virtual host-processor of the scalar type.

Every network declared in an mpC program has a type. The type specifies the number and types
and performances of virtual processors, links between these processors and their lengths charac-
terizing bandwidths, as well as separates the parent. For example, the type declaration
/*!*/ nettype Rectangle {
1*2*1 coord 1=4;
1*2*1 node {
/*A*/ I<2 : fast scalar;
/*5*/ I>=2: slow scalar;
/*6*/ };
1*1*1 link {
/*8*/ I>0: [I]<->[I-1];
/*9*/ I==0: [!]<-> [3];

/*10*/ };
/*11*/ parent [0];
/*12*/ },-
introduces network type Rectangle that corresponds to networks consisting of 4 virtual proces-
sors of the scalar type and different performances interconnected with undirected links of the
normal length in a rectangular structure.

In this example, line 1 is a header of the network-type declaration. It introduces the name of the
network type.

Line 2 is a coordinate declaration declaring the coordinate system to which virtual processors
are related. It introduces integer coordinate variable I ranging from 0 to 3.

Lines 3-6 are a node declaration. It relates virtual processors to the coordinate system declared
and declares their types and performances. Line 4 stands for the predicate/or all I<4 if I<2 then
fast virtual processor of the scalar type is related to the point with coordinate [I]. Line 5
stands for the predicate for all I<4 if I>=2 then slow virtual processor of the scalar type is
related to the point with coordinate [I]. Performance specifiers fast and slow specify relative
performances of virtual processors of the same type. For any network of this type, this informa-
tion allows the compiler to associate a weight with each virtual processor of the network normal-
izing it in respect to the weight of the parent. Note, that the virtual host-processor is always of the
scalar type and normal performance.

Lines 7-10 are a link declaration. It specifies links between virtual processors. Line 8 stands for
the predicate for all I<4 if l> 0 then there exists undirected link of normal length connecting vir-
tual processors with coordinates [I] and [1-1], and line 9 stands for the predicate for all I<4
if I==0 then there exists undirected link of normal length connecting virtual processors with
coordinates [I] and [3]. Note, that if a link between two virtual processors is not specified
explicitly, it is meant not absence of a link but existence of a very long link.

Line 11 is a parent declaration. It specifies that the parent has coordinate [0].
With the network type declaration, the user can declare a network identifier of this type. For

example, the declaration
net Rectangle rl;

introduces identifier rl of network.
The notion of distributed data object is introduced in the spirit of C* and Dataparallel C.

Namely, a data object distributed over a region of the computing space comprises a set of compo-
nents of any one type so that each virtual processor of the region holds one component. For exam-
ple, the declarations

net Rectangle r2;
int [*]Derror, [r2]Da[10];
float [host]f, [r2:I<2]Df;
repl [*]Di;

declare:
- integer variable Derror distributed over the entire computing space;
- integer 10-member array Da distributed over the network r2;
- undistributed floating variable f belonging to the virtual host-processor;
- aoating variable Df distributed over a subnetwork of network r2;
- integer variable Di replicated over the entire computing space.
By definition, a distributed object is replicated if all its components is equal to each other.
The notion of distributed value is introduced similarly.
In addition to a network type, the user can declare a parametrized family of network types called

topology or generic network type. For example, the declaration

scalar;

1*1*1 nettype Ring(n, p[n])
1*2*1 coord I=n;
/*3*/ node {
/*4*/ I>=0: fast*p[I] s
/*5*/ };
/*6*/ link {
/*!*/ I>0: [I]<->[I-1]
/*8*/ I==0: [I]<->[n-l]
/*9*/ };
/*10*/ parent [0];
/*11*/ };

introduces topology Ring that corresponds to networks consisting of n virtual processors of the
scalar type interconnected with undirected links of normal length in a ring structure.

The header (line 1) introduces parameters of topology Ring, namely, integer parameter n and
vector parameter p consisting of n integers.

Correspondingly, coordinate variable I ranges from 0 to n-1, line 4 stands for the predicate/or
all Kn if I>=0 then fast virtual processor of the scalar type, whose relative performance is
specified by the value ofp [I], is related to the point with coordinate [I], and so on.

Here, performance specifier f ast *p [I] includes so-called power specifier *p [I]. In gen-
eral, the value of the expression in a power specifier shall be positive integer. Any operand in the
expression should consist only of coordinate variables, constants and generic parameters. If the
value of the expression is equal to 1, the power specifier may be omitted.

It is meant that in the framework of the same network-type declaration any performance speci-
fier with the fast keyword specifies more powerful virtual processor than a performance speci-
fier with the slow keyword. It is meant also that the greater value of the expression in a power
specifier the more performance is specified.

With the topology declaration, the user can declare a network identifier of a proper type. For
example, the fragment

repl m, n[100];
/* Computing m, n [0], ...,n[m-1] */
{
net Ring(m,n) rr;

}

introduces identifier r r of the network, the type of which is defined completely only in run time.
Network r r consists of m virtual processors the relative performance of i-th virtual processor
being characterized by the value of n [i].

A network has a computing space duration that determines its lifetime. There are 2 computing
space durations: static, and automatic. A network declared with static computing space duration is
created only once and exists till termination of the entire program. A new instance of a network
declared with automatic computing space duration is created on each entry into the block in
which it is declared. The network is discarded when execution of the block ends.

Now, let us consider a simple mpC program computing the dot product of two vectors. The pro-
gram is correct but not good in the sense of efficiency.

1*1*1 nettype Star(n) {
1*2*1 coord I=n;
/*3*/ node { default: scalar;};
/*4*/ link { I>0: [0]<-> [i];};
/*5*/ parent [0];
/*6*/ };
/*7*/ #define N 100
/*8*/ void [*]main()
/*9*/ {
/*10*/ double [host]x[N];
/*11*/ double [host]y[N];
1*12*1 double [host]z;
/*13*/ double sqrt();
/*14*/ .../*Input of x and y */
/*15*/ {
/*16*/ net Star(N) s;
1*11*1 double [s]dx, sudd, sods;
/*18*/ desex[];
/*19*/ day[];
/*20*/ dz=dx*dy;
1*21*1 z=[host]dz[+];
1*22*1 z=([host]sqrt)(z);
/*23*/ }
/*24*/ .../* Output of z */
/*25*/ }

The program includes 2 functions - main defined here and library function sqrt. Lines 8-25
contain a definition of main. Lines 10-12 contain definitions of arrays x, y and variable z all
belonging to the virtual host-processor. Line 13 contains a declaration of function identifier
sqrt.

In general, mpC allows 3 kinds of functions. Here, functions of two kinds are used: main is a
basic function, and sqrt is a nodal function.

A call to basic function is executed on the entire computing space. Its arguments should either
belong to the virtual host-processor or be distributed over the entire computing space, and its
value should be distributed over the entire computing space. In contrast to other kinds of function,
a basic function can define networks. In line 8, construct [*], placed just before the function
identifier, specifies that main is an identifier of basic function.

Nodal function can be executed completely by any one virtual processor. Only local data objects
of the executing virtual processor may be defined in such a function. In addition, the correspond-
ing component of an externally-defined distributed data object can be used in the function. A dec-
laration of nodal function (e.g., in line 13) does not need any additional specifiers.

Line 16 defines the automatic network s with the virtual host-processor as a parent.
Line 17 defines 3 automatic variables dx, dy, and dz all distributed over s.
Line 18 contains unusual unary postfix operator []. In general, its operand should either desig-

nate an array or be a pointer. In this case, expression x [] designates array x as a whole, and the
statement in fine 18 scatters elements of array x to components of distributed variable dx.

Similarly, the statement in line 19 scatters elements of array y to components of distributed vari-
able dy.

The statement in line 20 is also executed on network s. But unlike 2 previous statements, its
execution does not need any communications between virtual processors constituting network s.

In fact, this statement is divided into a set of independent undistributed statements each of which
is executed by the corresponding virtual processor using the corresponding data components.
Such statement are called asynchronous statements. In particular, this statement multiplies (in
parallel) components of dx and dy and assigns the result to components of dz.

In line 21, the result of postfix unary operator [+] is distributed over s. All its components are
equal to the sum of all components of operand dz. Here, the result of prefix unary operator
[host] is the component of its operand belonging to the virtual host-processor. So, the state-
ment in line 21 assigns the sum of all components of dz to z.

Finally, line 22 calls to nodal function sqrt on the virtual host-processor and assigns the value
returned to z.

To support modular parallel programming as well as the writing of libraries of parallel pro-
grams, so-called network functions are introduced in addition to basic and nodal functions.

3. The mpC programming environment
Currently, the mpC programming environment includes a compiler, a run-time support system

(RTSS), a library, and a command-line user interface.
The compiler translates a source mpC program into the ANSI C program with calls to functions

of RTSS.
RTSS manages the computing space which consists of a number of processes running over tar-

get DMM as well as provides communications. It has a precisely specified interface and encapsu-
lates a particular communication package (currently, a small subset of MPI). It ensures platform-
independence of the rest of system components.

The library consists of a number of functions that support debugging mpC programs as well as
provide some low-level efficient facilities.

The command-line user interface consists of a number of shell commands supporting the cre-
ation of a virtual parallel machine and the execution of mpC programs on the machine. While cre-
ating the machine, its topology is detected by a topology detector running a special benchmark
and saved in a file used by RTSS.

Our compiler uses optionally either the SPMD model of target code, when all processes consti-
tuting a target message-passing program run identical code, or a quasi-SPMD model, when it
translates a source mpC file into 2 separate target files - the first for the virtual host-processor and
the second for the rest of virtual processors.

All processes constituting the target program are divided into 2 groups - the special process
called dispatcher playing the role of the computing space manager, and general processes called
nodes playing the role of virtual processors of the computing space. The special node called host
is separated. The dispatcher works as a server accepting requests from nodes. The dispatcher does
not belong to the computing space.

In the target program, every network or subnetwork of the source mpC program is represented
by a set of nodes called region. At any time of the target program running, any node is either free
or hired in one or several regions. Hiring nodes in created regions and dismissing them are
responsibility of the dispatcher. The only exception is the pre-hired host-node representing the
mpC pre-defined virtual host-processor. Thus, just after initialization, the computing space is rep-
resented by the host and a set of temporarily free (unemployed) nodes.

Creation of the network region involves the parent node, the dispatcher and all free nodes. The
parent node sends a creation request containing the necessary information about the network

topology to the dispatcher. Based on this information and the information about the topology of
the virtual parallel machine, the dispatcher selects the most appropriate set of free nodes. After
that, it sends to every free node a message saying whether the node is hired in the created region
or not. Deallocation of network region involves all its members as well as the dispatcher.

The dispatcher keeps a queue of creation requests that cannot be satisfied immediately but can
be served in the future. It implements some strategy of serving the requests aimed at minimization
of the probability of occurring a deadlock. The dispatcher detects such a situation when the sum
of the number of free nodes and the number of such hired nodes that could be released is less than
the minimum number of free nodes required by a request in the queue. In this case, it terminates
the program abnormally specifying a deadlock.

4. Irregular applications

4.1. Programming in mpC

Let us consider an irregular application simulating the evolution of a system of stars in a galaxy
(or set of galaxies) under the in^uence of Newtonian gravitational attraction.

Let our system consist of a number of large groups of bodies. It is known, that since the magni-
tude of interaction between bodies falls off rapidly with distance, the effect of a large group of
bodies may be approximated by a single equivalent body, if the group of bodies is far enough
away from the point at which the effect is being evaluated. Let it be true in our case. So, we can
parallelize the problem, and our application will use a few virtual processors, each of which
updates data characterizing a single group of bodies. Each virtual processor holds attributes of all
the bodies constituting the corresponding group as well as masses and centers of gravity of other
groups. The attributes characterizing a body include its position, velocity and mass.

Finally, let our application allow both the number of groups and the number of bodies in each
group to be defined in run time.

The application implements the following scheme:
Initializing the galaxy

on the virtual host-processor
Creation of the network
Scattering groups over

virtual processors
Parallel computing masses of groups
Interchanging the masses among

virtual processors
while(1) {

Visualization of the galaxy
on the virtual host-processor

Parallel computation of centers of
gravity of groups

Interchanging the centers among
virtual processors

Parallel updating groups
Gathering groups

on the virtual host-processor
}

The corresponding mpC program looks as follows:

r
tdefine DELTA 3600.0
fdefine INTERVAL 3

/*The maximum number of groups*/
#define MaxGs 30

/*The maximum number of bodies in a group*/
fdefine MaxBs 60 0

typedef double Triplet[3];
typedef

struct {Triplet pos; Triplet v; double m;}
Body;

/*The number of groups*/
int [host]M;

/*The numbers of bodies in groups*/
int [host]N[MaxGs];

repl dM, dN[MaxGs];

/*The galaxy timer*/
double [host]t;

/*Bodies of a galaxy*/
Body (*[host]Galaxy[MaxGs])[MaxBs];

nettype GalaxyNet(m, n[m]) {
coord I=m;
node { I>=0: fast*n[I] scalar;};
link (J=m){

J>0: length*(-1) [J]->[0];
J>0: length*l [I]->[J];

};
};

void [host]Input(), UpdateGroup();

void [host]VisualizeGalaxy();

void [*]Nbody(char *[host]infile)
{
^Initializing Galaxy, M and N*/
Input(infile);

/*Broadcasting the number of groups*/
dM=M;

/*Broadcasting the numbers of bodies*/
/*in groups*/
dN[]=N[];

r
net GalaxyNet(dM,dN) g;
int [g]myN, [g]mycoord;
Body [g]Group[MaxBs];
Triplet [g]Centers[MaxGs];
double [g]Masses[MaxGs];
repl [g]i;
void [net GalaxyNet(m, n[m])]Mintegrity

(double (*)[MaxGs]);
void [net GalaxyNet(m, n[m])]Cintegrity

(Triplet (*)[MaxGs]);

mycoord = I coordof body_count;
myN = dN[mycoord];

/*Scattering groups*/
for(i=0; i<[g]dM; i++)

[g:I==i]Group[] = (*Galaxy[i])[];

for(i=0; KrnyN; i++)
Masses[mycoord]+=Group[i].m;

([([g]dM, [g]dN)g])Mintegrity(Masses) ;
while(1) {

if(((int)(t/DELTA))%INTERVAL==0)
VisualizeGalaxy();

Centers[mycoord][]=0.0;
for(i=0; i<myN; i++)
Centers[mycoord][] +=

(Group[i].m/Masses[mycoord])*
(Group[i].pos)[];

([([g]dM,[g]dN)g])Cintegrity(Centers);
([g]UpdateGroup) (Centers, Masses,

Group, [g]dM);
t+=DELTA;
if (■((int) (t/DELTA)) %INTERVAL==0)

/*Gathering groups*/
for(i=0; i<[g]dM; i++)

(*Galaxy[i])[]=[g:I==i]Group[];
}

}
}

void [net GalaxyNet(m,n[m]) p] Mintegrity
(double (*Masses)[MaxGs])

{
double MassOfMyGroup;
repl i, j;
MassOfMyGroup=(*Masses) [I coordof i] ;
for(i=0; i<m; i++)

for(j=0; j<m; j++)
[p:I==i](*Masses)[j] =

[p:I==j]MassOfMyGroup;

void [net GalaxyNet(m,n[m]) p] Cintegrity
(Triplet (*Centers)[MaxGs])

{
Triplet MyCenter;
repl i, j;

MyCenter[] = (*Centers) [I coordof i][];
for(i=0; i<m; i++)

for(j=0; j<m; j++)
[p:I==i](*Centers)[j][] =

[p:I==j]MyCenter[];
}

This mpC source file contains the following external definitions:
- definitions of variables M, t and arrays N, Galaxy all belonging to the virtual host-processor;
- a definition of variable dM and array dN both replicated over the entire computing space;
- a definition of network type GalaxyNet;
- a definition of basic function Nbody with one formal parameter inf ile belonging to the vir-

tual host-processor;
- definitions of network functions Mintegrity and Cintegrity.
In general, a network function is called and executed on some network or subnetwork, and its

value is also distributed over this region of the computing space. The header of the definition of
the network function either specifies an identifier of a global static network or subnetwork, or
declares an identifier of the network being a special formal parameter of the function. In the first
case, the function can be called only on the specified region of the computing space. In the second
case, it can be called on any network or subnetwork of a suitable type. In any case, only the net-
work specified in the header of the function definition may be used in the function'body No net-
work can be declared in the body. Only data objects belonging to the network specified in the
header may be defined in the body. In addition, corresponding components of an externally-
defined distributed data object may be used. Unlike basic functions, network functions (as well as
nodal functions) can be called in parallel.

Network functions Input and VisualizeGalaxy, both associated with the virtual host-pro-
cessor, as well as the nodal function UpdateGroup are declared and called here.

Automatic network g, executing most of computations and communications, is defined in such
a way, that it consists of M virtual processors, and the relative performance of each processor is
characterized by the number of bodies in the group which it computes.

So, the more powerful is the virtual processor, the larger group of bodies it computes, and the
more intensive is the data transfer between two virtual processors, the shorter link connects them
(length specifier length* (-1) specifies a shorter link than length* 1 does).

The mpC programming environment bases on this information to map the virtual processors
constituting network g into the processes constituting the entire computing space in the most
appropriate way. Since it does it in run time, the user does not need to recompile this mpC pro-
gram, to port it to another DMM.

The result of the binary operator coordof (in the first statement of the inner block of function
Nbody) is an integer value distributed over g, each component of which is equal to the value of
coordinate I of the virtual processor to which the component belongs. The right operand of oper-
ator coordof is not evaluated and used only to specify a region of the computing space. Note,
that coordinate variable I is treated as an integer variable distributed over the region.

Call expression ([g] UpdateGroup) (....) causes parallel execution of nodal function

Updat eGroup on each of virtual processors of network g. It is meant, that function name
Update Group is converted to a pointer-to-function distributed over the entire computing space,
and operator [g] cuts from this pointer a pointer distributed over g. So, the value of expression
[g] Updat eGroup is a pointer-to-function distributed over g. Therefore, expression
([g]UpdateGroup) (....) denotes a distributed call to a set of undistributed functions.
Network functions Mintegrity and Cintegrity have 3 special formal parameters. Net-

work parameter p denotes the network executing the function. Parameter m is treated as a repli-
cated over p integer variable, and parameter n is treated as a pointer to the initial member of an
integer unmodifiable m-member array replicated over p. The syntactic construct
([(dM, dN) g]), placed on the left of the name of the function called in the call expressions in

function Nbody, just specifies the actual arguments corresponding to the special formal parame-
ters.

4.2 Experimental results

We compared the running time of our mpC program to its carefully written MPI counterpart.
We use 3 workstations - SPARCstation 5 (hostname gamma), SPARCclassic (omega), and
SPARCstation 20 (alpha), connected via lOMbits Ethernet. There were 23 other computers in
the same segment of the local network. We used LAM MPI version 5.2 [12] as a particular com-
munication platform.

The computing space of the mpC programming environment consists of 15 processes, 5 pro-
cesses running on each workstation. The dispatcher runs on gamma and uses the following rela-
tive performances of the workstations obtained automatically upon the creation of the virtual
parallel machine: 1150 (gamma), 331 (omega), 1662 (alpha).

The MPI program is written in such a way to minimize communication overheads. All our
experiments deal with 9 groups of bodies. We map 3 MPI processes to gamma, 1 process to
omega, and 5 processes to alpha, providing the optimal mapping if the numbers of bodies in
these groups are equal to each other.

The first experiment compares the mpC and MPI programs for homogeneous input data when
all groups consist of the same number of bodies. Figurel shows the running time of both pro-
grams simulating 15 hours of the galaxy evolution depending on the number of bodies in groups.

300
1 • ---MPI

■ mpC

/y
200

/?

100

■—■ -W"^^
v *■ 1 1 i i i .

100 200 300 400 5005
Figure 1. Running time of the MPI and mpC programs for homogenous input data.

In fact, it shows how much we pay for the usage of mpC instead of pure MPI. One can see that

the running time of the MPI program consists about 95-97% of the running time of the mpC pro-
gram. That is, in this case we loose 3-5% of performance.

The second experiment compares these programs for heterogeneous input data. Let our groups
consist of 10,10,10,100,100,100, 600, 600, and 600 bodies correspondingly.

The running time of the mpC program does not depend on the order of the numbers. In any case,
the dispatcher selects:

- 4 processes on gamma for virtual processors of network g computing two 10-body groups, one
100-body group, and one 600-body group;

- 3 processes on omega for virtual processors computing one 10-body group and two 100-bodv
groups;

- 2 processes on alpha for virtual processors computing two 600-body groups.
The mpC program takes 94 seconds to simulate 15 hours of the galaxy evolution.
The running time of the MPI program essentially depends on the order of these numbers. It

takes from 88 to 391 seconds to simulate 15 hours of the galaxy evolution depending on the par-
ticular order. Figure 2 shows the relative running time of the MPI and mpC programs for different
permutations of these numbers. All possible permutations can be broken down into 24 disjoint
subsets of the same power in such a way that if two permutations belong to the same subset the
corresponding running time is equal to each other. Let these subsets be numerated so that the
greater number the subset has, the longer time the MPI program takes. In figure 2, each such a
subset is represented by a bar, the height of which is equal to the corresponding value of t^/
tmpC-

i L 'MPl/tmpC

3

2

1 k

24 "*N
Figure 2. The relative running time for different permutations of the numbers of bodies in groups.

One can see that almost for all input data the running time of the MPI program exceeds (and
often, essentially) the running time of the mpC program.

5. Regular applications

5.1 Programming in mpC

Let us consider a regular application multiplying 2 dense square nxn matrices X and Y.
Our mpC program will use a number of virtual processors, each of which computes a number of

rows of the resulting matrix Z. Both dimension n of matrices and the number of virtual processors
involved in computations are defined in run time. So, our application implements the following

scheme:
Initializing X and Y

on the virtual host-processor
Creating a network
Scattering rows of X over

virtual processors of the network
Broadcasting Y over

virtual processors of the network
Parallel computing submatrices of Z
Gathering the resulting matrix Z

on the virtual host-processor

The corresponding mpC program looks as follows:

/*1*/ nettype SimpleNet(n) {
/*2*/ coord I=n;
/*3*/ };

/*4*/ nettype Star(m, n[m]) {
/*5*/ coord I=m;
/*6*/ node {I>=0: fast*n[I] scalar;};
1*1*1 link {I>0: [I]->[0], [0]->[I];};
/*8*/ parent [0];
/*9*/ };

/*10*/ void [*]MxM(float *x, float *y,
/*11*/ float *z, repl n) {
/*12*/ repl double *powers;
/*13*/ repl nprocs, nrows[MAXNPROCS] , n;
/*14*/

/*15*/ MPC_Processors_static_info
/*16*/ (&nprocs,Spowers);
/*17*/ Partition(nprocs,powers,nrows,n);
/*18*/ {
/*19*/ net Star(nprocs, nrows) w;
/*20*/ ([([w]nprocs)w])ParMult(
/*21*/ [w]x,[w]y,[w]z,[w]nrows,[w]n);
/*22*/ }
/*23*/ }

/*24*/ void [net SimpleNet(p)v] ParMult(
/*25*/ float *dx, float *dy, float *dz,
/*26*/ repl *r, repl n)
1*21*1 {
/*28*/ repl s=0;
/*29*/ int myn, i;
/*30*/ int *d, *1, c;
/*31*/
/*32*/ myn=r[I coordof r];
/*33*/ ([(p)v])MPC_Bcast(&s, dy, 1,
/*34*/ n*n, dy, 1);
/*35*/ d=calloc(p, sizeof(int));
/*36*/ l=calloc(p, sizeof(int));

/*37*/ for(i=0, d[0]=0; i<p; i++) {
/*38*/ l[i]=r[i]*n;
/*39*/ if(i+Kp) d[i+l]=l[i]+d[i] ;
/*40*/ }
/*41*/ c=l[I coordof c];
/*42*/ ([(p)v])MPC_Scatter(&s, dx , d,
/*43*/ 1, c, dx) ;
/*44*/ SeqMult(dx, dy, dz, myn, n);
/*45*/ ([(p)v])MPC_Gather(&s,dz,d,1,c,dz) ;
/*46*/ }

/*47*/ void SeqMult(float *a, float *b,
/*48*/ float *c, int m, int n)
/*49*/ {
/*50*/ int i, j, k, ixn;
/*51*/ double s;
/*52*/
/*53*/ for(i=0; Km; i++)
/*54*/ for(j=0, ixn=i*n; j<n; j++) {
/*55*/ for(k=0, s=0.0; k<n; k++)
/*56*/ s+=a[ixn+k]*(double)(b[k*n+j]);
/*57*/ c[ixn+j]=s;
/*58*/ }
/*59*/ }

/*60*/ void Partition(int p, double *v,
/*61*/ int *r, int n)
/*62*/ {
/*63*/ int sr, i;
/*64*/ double sv;
/*65*/
/*66*/ for(i=0, sv=0.0; i<p; i++)
/*67*/ sv+=v[i];
/*68*/ for(i=0, sr=0; i<p; i++) {
/*69*/ r[i]=(int)(v[i]/sv*n);
/*70*/ sr+=r[i];
/*71*/ }
/*72*/ if(sr!=n) r[0]+=n-sr;
/*73*/ }

Formal parameters x, y, and z of basic function MxM are distributed over the entire computing
space, and parameter n is replicated over the entire computing space. It is meant that n holds the
dimension of matrices. It is also meant that x points to nxn-member array, and the component of
this distributed array belonging to the virtual host-processor holds matrix X. Similarly, [host] y
points to an array holding matrix Y, and [host] z points to an array holding resulting matrix z.

Lines 15-16 calls to library nodal function MPC_Processors_static_inf o on the entire
computing space returning the number of actual processors and their relative performances. So,
after this call replicated variable nprocs will hold the number of actual processors, and repli-
cated array powers will hold their relative performances.

Line 17 calls to nodal function Partition on the entire computing space. Based on relative
performances of actual processors, this function computes how many rows of the resulting matrix

will be computed by every actual processor. So, after this call nrows [i] will hold the number of
rows computed by i-th actual processor.

Line .19 defines automatic network w. Its type is defined completely only in run time. Network
w, which executes the rest of computations and communications, is defined in such a way, that the
more powerful the virtual processor, the greater number of rows it computes. The mpC environ-
ment will ensure the optimal mapping of the virtual processors constituting w into a set of pro-
cesses constituting the entire computing space. So, just one process from processes running on
each of actual processors will be involved in multiplication of matrices, and the more powerful
the actual processor, the greater number of rows its process will compute.

Lines 20-21 call to network function ParMult on network w. In this call, topological argument
[w] nprocs specifies a network type as an instance of parametrized network type SimpleNet,
and network argument w specifies a region of the computing space treated by function ParMult
as a network of this type.

In lines 24-26, the header of the definition of function ParMult declares identifier v of a net-
work being a special network formal parameter of the function. Since network v has a parame-
trized type, topological parameter p is also declared in this header. In the function body, special
formal parameter p is treated as an unmodifiable variable of type int replicated over network
formal parameter v. The rest of formal parameters (regular formal parameters) of the function are
also distributed over v.

Actually, p holds the number of virtual processors in network v, n holds the dimension of matri-
ces, r points to p-member array, i-th element of which holds the number of rows of the resulting
matrix that i-th virtual processor of network v computes. Each component of dy points to an
array to contain nxn matrix Y. Each component of dz points to an array to contain the rows of Z
computed on the corresponding virtual processor of v. Each component of dx points to an array to
contain the rows of X used in computations on the corresponding virtual processor. In addition,
throughout the function execution the components of dx, dy, dz belonging to the parent of net-
work v are reputed to point to arrays holding matrices X, Y and Z correspondingly.

Line 28 defines variable s replicated over v. Lines 29-30 define variables myn, i, d, 1 and c all
distributed over v.

After execution of the asynchronous statement in line 32, each component of myn will contain
the number of rows of the resulting matrix that computes the corresponding virtual processor.

Lines 33-34 call to so-called embedded network function MPC_Bcast which is declared in a
standard mpC header as follows:

int [net SimpleNet(n)] MPC_Bcast(
repl const *coordinates_of_source,
void *source_buffer,
const source_step,
repl const count,
void *destination_buffer,
const destination_step);

This call broadcasts matrix Y from the parent of v to all virtual processors of v. As a result, each
component of the distributed array pointed by dy will contain this matrix.

An embedded network function looks like a library network function, but a compiler knows its
semantics. In particular, it will generate different code for different types of arguments corre-
sponding to source and destination buffers.

Statements in lines 35-40 are asynchronous. They form two p-member arrays d and 1 distrib-
uted over v. After their execution, 1 [i] will hold the number of elements in the portion of the

resulting matrix which is computed by the i-th virtual processor of v, and d [i] will hold the dis-
placement which corresponds to this portion in the resulting matrix. Equivalently, 1 [i] will hold
the number of elements in the portion of matrix X which is used by i-th virtual processor of v,
and d [i] will hold the displacement which corresponds to this portion in matrix X.

The statement in line 41 is also asynchronous. After its execution, each component of c will
hold the number of elements in the portion of the resulting matrix which is computed by the cor-
responding virtual processor (equivalently, the number of elements in the portion of matrix X
which is used by this virtual processor).

Lines 42-43 call to embedded network function MPC_Scatter which is declared as follows:
int [net SimpleNet(n) w] MPC_Scatter(

repl const *coordinates_of_source,
void *source_buffer,
const *displacements,
const *sendcounts,
const receivecount,
void *destination_buffer);

This call scatters matrix X from the parent of v to all virtual processors of v. As a result, each
component of dx will point to an array containing the corresponding portion of matrix X.

Line 44 calls to nodal function SeqMult on v, computing the corresponding portions of the
resulting matrix on each of its virtual processors in parallel (SeqMult implements traditional
sequential algorithm of matrix multiplication).

Finally, line 45 calls to embedded network function MPC_Gather which is declared as fol-
lows:

int [net SimpleNet(n) w] MPC_Gather(
repl const *coordinates_of_destination,
void *destination_buffer,
const *displacements,
const *receivecounts,
const sendcount,
void *source_buffer);

This call gathers resulting matrix z each virtual processor of v sending its portion of the result to
the parent of v.

5.2 Experimental results

We measured the running time of our mpC program multiplying two dense square matrices. We
used three Sun SPARCstations 5 (hostnames gamma, beta, and delta), SPARCclassic
(omega), and HP 9000-712 (zeta) connected via lOMbits Ethernet. There were more than 20
other computers in the same segment of the local network.

We used LAM MPI Version 6.0 as a particular communication platform as well as a new
improved benchmark for detecting relative performances of workstations. In addition, all execut-
ables, which took part in the experiment, were generated by GNU C compiler with optimization
option -02.

Eight virtual parallel machines were created:
• g consisting of gamma (its relative performance detected during the creation of this virtual

parallel machine was equal to 324);
• gd consisting of gamma (323), and delta (330);
• gbd consisting of gamma (324), beta (331), and delta (331);
• gbdz consisting of gamma (324), beta (327), delta (330), and zeta (510);

r
• zg consisting of z et a (510), and gamma (323);
• zgb consisting of zeta (509), gamma (321), and beta (325);
• zgbd consisting of zeta (466), gamma (328), beta (327), and delta (329);
• zo consisting of zeta (506), and omega (147).

The computing space of each of these virtual parallel machines was constituted by 5 processes
running on each of workstations (that is, for example, the computing space of gbdz was consti-
tuted by 20 processes). As a base of the comparison we used the running time of a sequential C
program implementing the same algorithm which was used in function SeqMult.

Table 1 gives the time of running the mpC program on four virtual parallel machines (g, gd,
gbd, and gbdz) dependent on the dimension of multiplied matrices, and compares it to the time
of running the sequential C program on workstation gamma. Machines g, gd, and gbd are homo-
geneous ones, meantime machine gbdz is heterogeneous.

Figure 3 illustrates how the mpC program allows to speed up the multiplication of two dense
square matrices, if the user starts from single workstation gamma and enhances his computing
facilities step by step by means of adding workstations delta, beta and zeta.

Table 1: Time to multiply two nxn matrices (sec)

n g g gd gbd gbdz
c mpC mpC mpC mpC

100 0.32 0.40 0.53 0.61 0.70
200 2.55 2.61 2.00 1.91 2.05
300 9.33 9.66 6.11 5.25 4.96
400 31.2 32.2 17.9 13.9 11.6
500 54.7 55.6 31.0 23.4 19.0
600 125. 125. 68.0 49.0 37.0
700 196. 196. 106. 75.0 58.0
800 320. 323. 172. 123.0 88.

Note, that the running time of the mpC program substantially depends on the network load. We
monitored the network activity during our experiments. We have observed up to 32 collisions per
second. The collisions occurred more often during broadcasting large data portions. The colli-
sions resulted in visible degradation of the network bandwidth.

speedup
i i • -g A -gbd

■ -gb ♦ -gbdz

3

2

<

...» ♦

6 1- * • • •- •

i i i i i i i fc

1 00 200 300 400 500 600 700 80CTn

Figure 3. Speedups computed relative to sequential code running on workstation gamma.

Table 2 compares contribution of communications and computations in the total running time of
the mpC program (results for gbdz are presented). The first column shows matrix dimensions, an
the second one shows percentage of communications in the total running time.

Table 2:Contribution of communications in the total running time (gbdz)

n Communications (%)
100 40
200 55
300 48
400 38
500 35
600 26
700 24
800 21

Communications in our mpC program consist of three parts: scattering matrix X, broadcasting
matrix Y, and gathering the resulting matrix. Table 3 compares contribution of each of these parts
in the total communication time (for the gbdz virtual parallel machine).

While analyzing the presented results, it is necessary to take into account some peculiarities of
both the implementation of MPI, which we used, and our local network.

Our local network does not support fast communications. It is based on lOMbits Ethernet and
uses old-fashioned network equipment. In addition, there are 26 computers in our segment of the
network connected via cascade of 4 hubs. To characterize our network, it is enough to say that
ftp transfers data from gamma to alpha at the rate of 300-400Kbytes/s. It means that real
bandwidth of our network is about 25-30% of its maximum bandwidth.

Table 3:Contribution of broadcast, scatter, and gather in the total communication time (gbdz)

n beast scatter gather
100 70% 18% 12%
200 78% 11% 11%
300 78% 10% 12%
400 79% 10% 11%
500 79% 10% 11%
600 79% 10% 11%
700 79% 10% 11%
800 76% 13% 11%

On the other hand, LAM MPI Version 6.0 ensures sending large bating arrays at the rate of 50-
60Kbytes/s. In addition, it doesn't use multicasting facilities of our network when broadcasting.

Nevertheless, even under these conditions, our mpC program has demonstrated good speedup comparing with the
sequential C program.

If the implementation of MPI ensured the communication rate comparable with the real band-
width of the local network and used its multicasting facilities, contribution of communications in
the total running time of our mpC program would not exceed 5-7%. If, in addition, we used
lOOMbits Ethernet and up-to-date network technologies (for example, replaced hubs with switch-
ing devices), contribution of communications in the total running time of the mpC program would
not exceed 1-2%. That is, the mpC programming environment can ensure practically ideal
speedup of the presented mpC program for up-to-date heterogeneous networks of workstations.

Table 4 gives the time of running the mpC program on four heterogeneous virtual parallel

r
machines (z g, z gb, z gbd, and z o) dependent on the dimension of multiplied matrices, and com-
pares it to the time of running the sequential C program on workstation zeta.

Table 4: Time to multiply two nxn matrices (sec)

n z zg zgb zgbd zo zo
C mpC mpC mpC mpC MPI

100 0.18 0.43 0.52 0.57 0.67 0.91
200 1.52 1.67 1.70 1.79 2.36 4.29
300 6.80 5.66 5.08 4.90 7.09 14.2
400 17.3 14.2 11.7 11.1 16.4 33.0
500 36.2 26.0 21.0 19.0 32.8 68.0
600 66.8 53.0 41.0 37.0 58.5 120.
700 113. 83.0 64.0 56.0 97.0 200.
800 180. 134. 102. 88.0 152. 306.

In addition, the table compares the mpC program and its manually written MPI counterpart on
machine zo.

i

2

L • - zg A - zgbd
■ -zgb

A -A
A

1.5 ^.Ar^"
A/'" »__

1

0.5
!

A*^%— •

r
■ i i i i i i ^

1 00 200 300 400 500 600 700 800n

Figure 4. Speedups computed relative to sequential code running on workstation zeta.

Figure 4 illustrates how the mpC program allows to speed up the multiplication of two dense
square matrices, if the user starts from single powerful workstation zeta and enhances his com-
puting facilities step by step by means of adding less powerful workstations gamma, beta, and
delta. One can see that the mpC programming environment ensures good speedup in this case
also.

Another interesting result can be extracted from tables 1 and 4. One can see that the slow net-
work consisting of workstations gamma and delta (virtual parallel machine gd), the perfor-
mance each of which is about 60% of the performance of workstation zeta, demonstrates a little
bit higher performance (when multiplying two dense square matrices) than single workstation
zeta.

Finally, figure 5 shows clearly, that even for very heterogeneous distributed memory machine
consisting of high-performance HP workstation zeta and low-performance Sun workstation
omega, the mpC program allows to utilize its parallel potential, speeding up the multiplication

r
of two dense square matrices (comparing to the sequential C program running on zet a). At the
same time, the use of its MPI counterpart, which distributes the workload equally, does not allow
to do it slowing down the matrix multiplication essentially.

speedup

1.2

0.9

0.6

0.3^

• - mpC
■MPI

~7^
/

/

100 200 30Ö 4Ö0 50Ö 60Ö 70Ö 800*n"

Figure 5. Speedups for MPI and mpC programs both running on machine zo.

6. Summary

The key peculiarity of mpC is its advanced facilities for managing such resources of DMMs as
processors and links between them. They allow to develop parallel programs for DMMs that once
compiled will run efficiently on any particular DMM, because the mpC programming environ-
ment ensures optimal distribution of computations and communications over DMM in run time.

The mpC language is a medium-level one. It demands from the user more than high-level paral-
lel languages (say, Fortran D), but much less than MPI or PVM.

Like MPI and PVM, mpC supports efficient programming a particular DMM. Like MPI, the
user does not need to rewrite (and, moreover, to recompile) an mpC program to port it to other
DMMs.

At the same time, MPI (as well as MPI-2) does not ensure efficient porting to other DMMs, that
is, it does not ensure, that a program, running efficiently on a particular DMM, will run efficiently
after porting to other DMM. The mpC language and its programming environment do it.

Advantages of mpC are especially clear when programming heterogeneous (irregular) applica-
tions or/and programming for heterogeneous DMM.

It makes mpC and its programming environment suitable tools for development of libraries of
parallel programs, especially for heterogeneous DMMs.

The paradigm of parallel programming, supported by mpC, foresees explicit specification of a
virtual parallel machine executing computations and communications. At the same time, mpC
also supports implicit parallel programming, when parallelism is reduced to calls to library basic
functions (like function Nbody from section 4.1) that just encapsulate parallelism.

